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Abstract-The transition of a thermal plume from laminar to turbulent flow is characterized by a non- 
axisymmetric deformation. Past analyses are limited either to the planar plume or to the axisymmetric 
assumption, and subsequently are not capable of predicting the real phenomenon. The present study 
develops a new dispersion equation which accounts for the instability of all transverse modes on the plume. 
The dispersion equation shows that the dynamic interaction of the ambient air is responsible for the growth 
of any disturbance on the plume surface, and the sinuous mode has the highest growth rate at all 
wavenumbers when the density difference between the plume and the surrounding air is small. The present 

theory proves the snake form of onset instability of a plume. 

INTRODUCTION 

THE TRANSITION of a laminar flow to turbulent flow 
usually follows the initial instability of the laminar 
flow to the naturally occurring disturbances. Depend- 
ing on the flow condition and geometries, the tran- 
sition process may take different forms. As for a free 
plume, the instability character is usually very differ- 
ent from that of the plume which is adjacent to a 
surface. It is well known that free body flows are much 
less stable than those adjacent to the surface, since the 
surface damps disturbance. The disturbance mech- 
anisms that are asymmetric across the midplane are 
usually less stable than those that are symmetric. 
Indeed, the commonly-observed ‘meandering’ defor- 
mation of cigarette smoke or thermal plume from a 
point heat source due to buoyancy (as shown in Fig. 
1) illustrates one of the many transition roads. A 
previous analysis of plume instability was attempted 
by Pera and Gebhart [l], for the planar plume. They 
used the Tollmien-Schlichting theory of small dis- 
turbance and showed that the assumed 2-D planar 
base plume flow was less stable for a symmetric mode 
than for an asymmetric one. The analysis was repeated 
by Haaland and Sparrow [2], retaining two of the 
several terms excluded in the conventional approxi- 
mation. Kimura and Bejan [3] have carried out a series 
of experiments on cigarette smoke and demonstrate 
that at the transition of a laminar buoyant plume to 
the turbulent flow the plume assumes a sinusoidal 
(meandering) shape with a characteristic wavelength 
scaling with the local plume diameter. Theoretically, 
they argue that the transition occurs when the time 
of viscous penetration normal to the plume becomes 
comparable with the minimum time period with which 
the plume can fluctuate as an unstable inviscid stream. 
Indeed, the striking similarity of the above defor- 
mation of a straight flow stream into a sinusoidal 
shape with the classical buckling of a solid elastic 
column (Euler buckling) has opened a new subfield in 

the frontiers of fluid mechanics research-‘buckling 
flows’ [4]. An excellent review and pictorial collection 
of the buckling flows are provided by Bejan [4,5]. 
As a science by itself, the buckling flow has been 
recognized as an entirely different formulation of the 
onset instability in plume flow [6]. The purpose of this 
paper is to analyze the buckling of an axisymmetric 
plume from the point of transverse instability. The 
plume is modeled as a stream with uniform velocity, 
and the subsequent instability of the cylindrical vortex 
sheet is studied. 

FORMULATION AND SOLUTION 

Here we study the instability of an infinitesimal 
amplitude wave on an initially axisymmetric plume 
surface of infinite length. The plume is modeled as a 
free straight stream with a constant radius a, velocity 
U,, and density p,. The surrounding air is modeled 
with density p2 and velocity Uz. The fluids are 
assumed to be incompressible and inviscid. If the sys- 
tem is subjected to a disturbance the instantaneous 
velocity (u,) and pressure (pi) can be decomposed into 
two components, the mean (U, and PJ and dis- 
turbance (ui and pi) quantities 

ui = Ui+ui i = 1,2 (1) 

pi=Pi+pi i= 1,2 (2) 

where subscripts 1 and 2 represent the quantities in 
the plume and the air, respectively. The flow motion 
is governed by the conservation of mass and momen- 
tum. By substituting the above quantities into the 
governing equations in the cylindrical coordinates Y, 
0 and z, and neglecting the second-order non-linear 
terms, we obtain linearized disturbance equations of 
the form : 

vu, = 0 

aqat+ u, auijaz = - I/~,v~,. 
(3) 

(4) 
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By taking the divergence of equation (4) and making C, ,Ih(ka)l[p,(a+ikUI)2] 
use of equation (3), we can eliminate the velocity 
vector, ui, and obtain a single equation for the per- 

-C,zK’,(ka)/[p,(a+ikU2)2] = 0. (20) 

turbed pressure The non-trivial solutions of the above equations exist 

V’p, = 0 (5) 
if the determinant of the coefficient matrix vanishes. 
This condition leads to the following characteristic 

where equation : 

V2 = l/r ~/&(r~/&)+ 1/rZ~2/LYJ2+8/~2z. (6) (~,~+~~~)tl*3_2ikcl(p~~U~+p~,U,) 

Let the disturbance be three-dimensional with wave- -kz(P2nlU:+PlmU:) = 0 (21) 
numbers ka and m in the streamwise and azimu- 
thal directions. The expressions for the perturbed 

where 

quantities are Plrn = Y~PI, PZ~ = B,A, IL = k~~(ka)/~(ku), 

Pi = Pi(r)exkZ+mwar (7) p,,, = - kK,(ka)/Km(ku) (22) 

“i = “i(r) eiwz+mO)+ar (8) IL(ka) = dZ,,z(kr)/drl,_,, 

where D: is the growth rate with respect to time. It is Km(ka) = dK,,,(kr)/drl,=,. (23) 
m in the above expressions that introduces the non- 
axisymmetric variation of the disturbance. Equation 
(5) now becomes 

RESULTS AND DISCUSSION 

[l/r a/ar (v a/h) -m’/r’-k*]P,(r) = 0. (9) 
The solution of the quadratic equation (21) gives 

two roots 

The solution to Pi(r) is in terms of the mth order z= ik(p,JJ, +~~~U*)/(P,~+P~) 

modified Bessel function of the first and second kinds + [~PA+,(u, -~,)Y/(P,,+P,,). (24) 

p,(r) = ~~~L(kr)+GdMkr). (10) It is clear that when the plume has the same velocity 

Substituting equation (10) into equation (4), we can 
as the ambient, i.e. U, - U2 = 0, it is neutrally stable. 

immediately find the velocity components 
We further write equation (24) in a dimensionless 
form 

u, = - l~[pi(~+ikU~)]VIP~(r)ei(~z+~~)+ar]. (11) 

There are four constants (C, ,, CIz, C2, and Cz2) that 
have to be determined from boundary conditions. For 
the plume (i = 1), the finite value of pressure at r = 0 
requires 

Ct2 = 0 (12) 

and similarly for the ambient air, the finite value of 
pressure at r -+ cc requires 

c*, = 0. (13) 

The other two constants are determined by the 
continuities of pressures and displacements on the 
interface 

PI =P2 (14) 

111=112 (15) 

where ‘I, and qz are the perturbed displacements of 
the interface of the two fluids, and they satisfy 

with 

a* = + (uf*), + i(a,“), 

u* = aa/ U, - Uzl 

W), = k~&nSmQ) “2/(~m +BmQ) 

(25) 

(26) 

(27) 

--ka(p,,u, +p2,,,U2) -_____ 
w)m = (Pln+P2m)lU,-U2l 

(28) 

and Q as the density ratio 

Q = PZIPI. (29) 

The axisymmet~c mode is realized when m = 0. For 
any integer, m > 0, (cc,*), represents the growth rate 
of a non-axisymmetric disturbance. Figure 2 shows 
the geometric representation of the transverse modes. 
For example, when m = 0 (Fig. 2(a)), the cross-sec- 
tion of the plume is circular and its radius varies only 

ui = aq,/at + ui agijaz i = I, 2. (16) 

t+ is the velocity component in the radial (r) direction. 
From equation (11) we have a) Dilational Wave (x1=0) 

aI = -C, ,~[p,(ff+ikU,)]~~(~~) 

v2 = -C,,/fp,(a+ikU,)l~6(kr). 

Conditions (14) and (15) now become 

(17) 

(18) 

b) sinuow wave (In-l) 

C1 ,1,&r) - C,,K,,,(ka) = 0 (19) FIG. 2. Dilational wave and sinuous wave 
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We see that under both conditions the growth rates 
are the same and are independent of m. This is under- 
standable because when ka --t x. the original cyl- 
indrical vortex sheet becomes a planar sheet. 
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along the axial direction (2). The deformation of the 
plume is dilational and is sometimes called the vari- 
cose mode. This mode has been analyzed extensively 
by the existing mathematical theory on plume insta- 
bility. For the mode with m = 1 (Fig. 2(b)), the cross- 
section of the plume is still nearly circular with con- 
stant size in the axial direction. The axis of the plume, 
however, is sinuous. This mode is commonly referred 
to as the sinuous mode or ‘snake’ mode. As form = 2. 
the cross-section of the plume is elliptic [7]. When m 
becomes large, the development of the m th transverse 
mode leads to m peaks in the circumferential direction. 
To analyze the growth of the possible asymmetric 
modes, we will discuss several limiting as well as 
general cases. 

For wavelengths which are neither very short nor 
very long, we can use equation (27) directly to com- 
pute the growth rate of the mth mode. It is observed 
from Fig. 3. which displays the growth rate for various 
modes at Q = 1.0, that the system is unstable at al4 
wav~numbers for all modes, and asymmetric modes 
(m > 0) are more unstable than the symmetric one 
(m = 0). It seems that all asymmetric modes have 

almost the same growth rate. Careful examination of 
the calculated data indicates that the sinuous mode 
has the highest growth rate in all the modes. and the 

following relation holds : 

Long wavelength limit 

At the long wavelength limit 

ka = 2na/l+ 0. 

Since 

(30) 

the limiting form of Bessel functions for I,,, and K,,, at 
ka -+ 0 gives 

p0 = 2/(ku), jjO = --ka In (ka) for m = 0 

(32) 

ym = ka/m, ,!&, = ka/m for m # 0. (33) 

Now, equation (27) is simplified to 

(b~,*)~ = ka[ -2(ka) In (ka)Q] “‘[2- (kn)’ In (ka)Q] 

m = 0 (34) 

(cc,*),, = kaQ”(l+Q) m # 0. (35) 

lt is interesting to notice that the growth rate of an 
asymmetric mode is independent of m. 

Short wavelength limit 
When the wavelength of a disturbance is very short, 

or when ka -+ co, the following two cases arc dis- 

cussed : (a) m cc ka and (b) m B ka. 
(a) m << ka. For the transverse modes of m << 

wavenumber ka, the values of 11~~ and fim in equation 

(31) reduce to 

“1 ,,?, =T 1 1 IL, = 1 (36) 

Equation (27) now becomes 

(c$),,~ = kaQ”‘fl+ Q). (371 

(b) m >-> ka. When the order of the modified Bessel 

functions (or the transverse mode m) is very high, the 
asymptotic expansion of the functions leads to 

Y,,, = ka/[(ka)‘+m*)]‘!‘, p,,, = ka/[(ka)*+m21”“. 

(38) 

(r,*),* = kaQ’ ‘!(I + Q,. (39) 

(XP), > (x,*,, > (Xi)?... > (a,*),,;., -p cm,,. 
(4Oj 

At limits of k -+ 0 and k -+ m’, the growth rates for all 
the modes approach the asymptotic values discussed 

above. 

I$i%c.t of’ density rutio 
For the buoyancy Aow, the density ratio reflects the 

dimensionless temperature ratio 

The density ratio also relates to the Grashof number. 
Since pZ > p,, Q is always larger than or equal to 
unity. If p2 >> p,, the sinuous mode (m = I) may not 

The dispersion relation of equation (27) now becomes 
Fro. 3. Growth rate as a function of wav~numb~r at various 

transverse modes for Q = I .O. 
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FIG. 4. Effect of density ratio for m =I 1 and 0. 

be the preferred mode. This is proved by Fig. 4, 
which shows the growth rate of the dilational mode 
(m = 0) and the sinuous mode (m = 1) at the density 
ratios ofQ = 10 and 100. Unlike the case of Q = 1.0, 
the symmetric mode dominates when the wavenumber 
is high. The wavenum~r~ above which (CL,*) 0 > ftlf) , , 
depends on density ratio. An equilibrium density ratio 
(Q&, is defined at which 

(K% = (%%. (42) 

From equation (27) we obtain 

(QeqLl = [~~Y~~(~~~~)l”~. (43) 

The calculations by the above relation show that for 
all m, (Q&,, are almost the same and have the fol- 
lowing relation : 

aq> 1 > ai!& I=- * * - =- eAq)r, > ’ - .+ WI 

The (Qe& are depicted in Fig. 5. An amplified view 

FIG. 5. Equilibrium density ratio as a function of wave- 
number. 

wavcnumbcr ka 

FIG. 6. Amplified view of Fig. 5 at m = 1 and 2. 

of Fig. 5 along with (Q&, is given in Fig. 6. As for 
cigarette smoke, in addition to a smaller radius of the 
plume, the density ratio is close to unity. Therefore, 
one expects sinuous instability. For the plume from a 
fire poof, both the radius of the plume and the density 
ratio are high (due to the high tem~rature of the 
flame). As a result, the dilational mode may be the 
least stable mode. 

SUMMARY 

The present paper derives a dispersion equation 
which accounts for the growth of all asymmetric 
modes in a plume. It is shown that when the density 
ratio between the plume and the surrounding air is 
small asymmetric modes have a higher growth rate 
than the symmetric one, and the sinuous mode is the 
most unstable mode. This proves theoretically the 
‘buckling’ (or meandering) shape observed in the 
experiments. 
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DEFORMATION D’LJN PANACHE THERMIQUE 

R&sum&-La transition dune panache thermique entre bcoulements laminaire et turbulent est caracterisee 
par une deformation qui n’est pas axialement symetrique. Les analyses antirieures sont limit&s soit au 
panache plan ou H l’hypothese axisymetrique et par consequent elles ne sont pas capables de predire le 
phenomtne reel. Cette etude developpe une nouvelle equation de dispersion qui tient compte de l’instabilite 
de tousles modes transverses. L’iquation de dispersion montre que l’interaction dynamique de l’air ambiant 
est responsable de la croissance d’une perturbation quelconque ci la surface du panache et le mode sinueux 
a le taux de croissance le plus tleve a tous les nombres d’onde lorsque la difference de densite entre le 
panache et Pair environnant est faible. La theorie presentee prouve la forme sinueuse de l’apparition de 

l’instabilitt d’un panache. 

KRUMMUNG EINER THERMISCHEN AUFTRIEBSFAHNE 

Zusammenfassung-Der Ubergang einer thermischen Auftriebsfahne von laminarer zu turbulenter Stro- 
mung ist durch eine nich~chsensymmetrische Deformation charakterisiert. Vorangegangene Analysen sind 
entweder auf ebene Auftriebsfahnen beschr&kt oder auf die Annahme einer Achsensymmetrie. Daher sind 
diese Untersuchungen aullerstande das tatsachliche Phlnomen zu beschreiben. Hier wird nun eine neue 
Dispersionsgleichung entwickelt, die die Instabilitat aller Ubergangsarten der Auftriebsfahne beriick- 
sichtigt. Die Dispersionsgleichung zeigt, dal3 das dynamische Zusammenspiel mit der umgebenden Luft 
fur das Wachstum jeghcher Stiirungen an der Oberflache der Auftriebsfahne verantwortlich ist. Die 
Sinusform zeigt bei allen We~enzahlen dann die gr6Bte Wa~hstumsrate, wenn der DichteuIlterschied 
zwischen der Auftriebsfahne und der umgebenden Luft gering ist. Die vorgelegte Theorie bestltigt die 

Schlangenform fi.ir das Auftreten einer Instabilitlt der Auftriebsfahne. 

I-IPOflOJIbHbIm M3lW6 BOCXOfl5IIIlEti CTPYZl 

AsiioTaum-KIepexoa Bocxonsureti c~pym or nahlmiapeoro pexinhla K Typ6yJIeHTHOMy xapaarepn- 
3yeTcs He~cu~eTpH~Ho~ ~e~opMa4~e~. ilpenbmyllule pa6oTbI 0rpan~~~B~~~b na6o rmocKm4n, 
nn60 OC~CEMM~T~~~SH~IMU CTpyaMa B He COOTBWCTBOBilAW &,CEUlbHOii CHTyLUlEISi. B HaCTOIlLWM HCCJIeAO- 

BawiIi wdBeAe9eHo “owe ypaBtieHue flacnepcus, ynaTbn3a~tuee HeynoHswBocTb Bcex nonepeqHbrx Man B 
cTpye. YpaBHeHwe nOKa3blBaeT, 4~0 AHHaMUveCROe B3aSiMOAeiiCTBue C OKpyXCaloLUHM B03AyXOM 06yc- 
noBnWBaeT p0CT 3IIO6bix B03M)‘EW%iB% Ha ITOBepXHOCTfi CT$JyU Ii BOnHOO6pa3HaS MOAa 06inaAaeT MBKCB- 

M~bHO~ CKOpocFbto pOCTa lIpl% nro6r.t~ BOJIHOBMX YBCJIaX, eCJII% pii3HOCTb ROTH-Ed CTya A 

oKpymw3~ero nosl(yxa He3HamTmbHa.Coraaczio npem0W~~0ii TeOptiEi 803inmior3eme HeycToZira- 


