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Buckling of a thermal plume
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Abstract—The transition of a thermal plume from laminar to turbulent flow is characterized by a non-
axisymmetric deformation. Past analyses are limited either to the planar plume or to the axisymmetric
assumption, and subsequently are not capable of predicting the real phenomenon. The present study
develops a new dispersion equation which accounts for the instability of all transverse modes on the plume.
The dispersion equation shows that the dynamic interaction of the ambient air is responsible for the growth
of any disturbance on the plume surface, and the sinuous mode has the highest growth rate at all
wavenumbers when the density difference between the plume and the surrounding air is small. The present
theory proves the snake form of onset instability of a plume.

INTRODUCTION

THE TRANSITION of a laminar flow to turbulent flow
usually follows the initial instability of the laminar
flow to the naturally occurring disturbances. Depend-
ing on the flow condition and geometries, the tran-
sition process may take different forms. As for a free
plume, the instability character is usually very differ-
ent from that of the plume which is adjacent to a
surface. It is well known that free body flows are much
less stable than those adjacent to the surface, since the
surface damps disturbance. The disturbance mech-
anisms that are asymmetric across the midplane are
usually less stable than those that are symmetric.
Indeed, the commonly-observed ‘meandering’ defor-
mation of cigarette smoke or thermal plume from a
point heat source due to buoyancy (as shown in Fig.
1) illustrates one of the many transition roads. A
previous analysis of plume instability was attempted
by Pera and Gebhart [1], for the planar plume. They
used the Tollmien-Schlichting theory of small dis-
turbance and showed that the assumed 2-D planar
base plume flow was less stable for a symmetric mode
than for an asymmetric one. The analysis was repeated
by Haaland and Sparrow [2], retaining two of the
several terms excluded in the conventional approxi-
mation. Kimura and Bejan [3] have carried out a series
of experiments on cigarette smoke and demonstrate
that at the transition of a laminar buoyant plume to
the turbulent flow the plume assumes a sinusoidal
(meandering) shape with a characteristic wavelength
scaling with the local plume diameter. Theoretically,
they argue that the transition occurs when the time
of viscous penetration normal to the plume becomes
comparable with the minimum time period with which
the plume can fluctuate as an unstable inviscid stream.
Indeed, the striking similarity of the above defor-
mation of a straight flow stream into a sinusoidal
shape with the classical buckling of a solid elastic
column (Euler buckling) has opened a new subfield in

the frontiers of fluid mechanics research— ‘buckling
flows’ [4]. An excellent review and pictorial collection
of the buckling flows are provided by Bejan [4, 5].
As a science by itself, the buckling flow has been
recognized as an entirely different formulation of the
onset instability in plume flow [6]. The purpose of this
paper is to analyze the buckling of an axisymmetric
plume from the point of transverse instability. The
plume is modeled as a stream with uniform velocity,
and the subsequent instability of the cylindrical vortex
sheet is studied.

FORMULATION AND SOLUTION

Here we study the instability of an infinitesimal
amplitude wave on an initially axisymmetric plume
surface of infinite length. The plume is modeled as a
free straight stream with a constant radius a, velocity
U,, and density p,. The surrounding air is modeled
with density p, and velocity U,. The fluids are
assumed to be incompressible and inviscid. If the sys-
tem is subjected to a disturbance the instantaneous
velocity (u,) and pressure (p;) can be decomposed into
two components, the mean (U; and P;) and dis-
turbance (u; and p;) quantities

i=1,2 1)
i=1,2 )

u;=U+u
pi = Pi+p;

where subscripts 1 and 2 represent the quantities in
the plume and the air, respectively. The flow motion
is governed by the conservation of mass and momen-
tum. By substituting the above quantities into the
governing equations in the cylindrical coordinates r,
0 and z, and neglecting the second-order non-linear
terms, we obtain linearized disturbance equations of
the form:

Vu, =0 3)
ou,j0t+ U, du oz = —1/p,Vp,. @)
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(b)

FiG. 1. Non-axisymmetric transition of thermal plumes. (a) Planar heat source. (b) Cigaretie smoke.
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By taking the divergence of equation (4) and making
use of equation (3), we can climinate the velocity
vector, w;, and obtain a single equation for the per-
turbed pressure

Vip,;=0 (%

where
V2 = Ljr 8jdr (rdjory+ 1/r* 621007 +07/8%z.  (6)
Let the disturbance be three-dimensional with wave-
numbers ka and m in the streamwise and azimu-

thal directions. The expressions for the perturbed
quantities are

e L) itk mB) bt N
pi=pikrje 7
u, = u,-(r) ei(kz+m9)+m (8)

where « is the growth rate with respect to time. It is
m in the above expressions that introduces the non-
axisymmetric variation of the disturbance. Equation
(5) now becomes

[A/r ) (r 8j0F) —m* K p(r) = 0.  (9)

The solution to p,{r) is in terms of the mth order
modified Bessel function of the first and second kinds

pi(r) = Cu L (kr) + Cir K, (kr). (10)

Substituting equation (10) into equation (4), we can
immediately find the velocity components

u, = — 1/[pa+ikU)V[p,(r) e+ >]. (11)

There are four constants (C,,, Cy,, C,, and C,,) that
have to be determined from boundary conditions. For
the plume (i = 1), the finite value of pressure at r = 0

requires
Ci,=90 12y

and similarly for the ambient air, the finite value of

pressure at r — oo requires
Coi=0. (13)

The other two constants are determined by the
continuities of pressures and displacements on the
interface

P =P (14)
=1 (15)

where #, and #, are the perturbed displacements of

the interface of the two fluids, and they satisfy
v, = onjot+ U, dn,fdz i=1,2. (16)

v, 1s the velocity component in the radial (r) direction.
From equation (11) we have

vy = —Cpflp(a+ikU ), (kr)
vy = —Coflp2(a+ik U)K, (k7).
Conditions (14) and (15) now become

Cil,(ka)— Cy, K, (ka) = 0

an
(18)

19

Ciilka)i{p (x+ikU )]
—Co K, (ka)/[p2(a+ikU2)] = 0. (20)

The non-trivial solutions of the above equations exist
if the determinant of the coefficient matrix vanishes.
This condition leads to the following characteristic
equation:

(le +p2m)a2+2ika(p2m UZ +plm Ul)
—k*(p2Ui+p UD =0 (21)

where
Pim = YmP1s sz = Bmpb Vm = k[m(ka)/l:n(ka)’
R e _LE (ENIF (L) N
Pm = KD ARG J [N \RG) \ e}
I(ka) = dL,(kr)/dr|, .,
K (ka) = dK,,(kr)jdr,_.. 23)

RESULTS AND DISCUSSION

The solution of the quadratic equation (21) gives
two roots

% = ik(p 1 U+ P2 U0 1m+ Pom)
* {kp impzm(Ul - U2)2] 1;2[<ptm+p2m)' (24)

It is clear that when the plume has the same velocity
as the ambient, i.e. U, — U, = 0, it is neutrally stable.
We further write equation (24) in a dimensionless
form

a* = £ {0}), +i(a)n 25)
with
o* = aa/|U, ~ U,| (26)
(@) = ka(7,u D) "*(tm+ B Q) @7
—ka U 5
i T A M)
and Q as the density ratio
0 = pa/py. 29

The axisymmetric mode is realized when m = 0. For
any integer, m > 0, («*),, represents the growth rate
of a non-axisymmetric disturbance. Figure 2 shows
the geometric representation of the transverse modes.
For example, when m = 0 (Fig. 2(a)), the cross-sec-
tion of the plume is circular and its radius varies only

a) Dilational Wave (m=0)

b) Sinuous Wave (m=1)

FiG. 2. Dilational wave and sinuous wave.
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along the axial direction (z). The deformation of the
plume is dilational and is sometimes called the vari-
cose mode. This mode has been analyzed extensively
by the existing mathematical theory on plume insta-
bility. For the mode with m = 1 (Fig. 2(b)), the cross-
section of the plume is still nearly circular with con-
stant size in the axial direction. The axis of the plume,
however, is sinuous. This mode is commonly referred
to as the sinuous mode or ‘snake’ mode. Asform = 2,
the cross-section of the plume is elliptic [7]. When m
becomes large, the development of the mth transverse
mode leads to m peaks in the circumferential direction.
To analyze the growth of the possible asymmetric
modes, we will discuss several limiting as well as
general cases.

Long wavelength limit
At the long wavelength limit

ka = 2najl - 0. (30)
Since
Vm = kaflkal, . ,(ka)/1,,(ka)+m].
B = kajlkaK,, . (ka)/K, (ka)—m] (30

the limiting form of Bessel functions for /,, and K, at
ka — O gives
Vo = 2/(ka), Bo= —kalntka) for m=0

(32)

YV = kajm, B, =ka/m for m#0. (33)

Now, equation (27) is simplified to

(@) = ka[—2(ka) In (ka)Q1'*[2— (ka)” In (ka)Q]

m=0 (34)

(a¥),, = kaQ " (1+ Q) m# 0. (35)

It is interesting to notice that the growth rate of an
asymmetric mode is independent of m.

Short wavelength limit

When the wavelength of a disturbance is very short,
or when ka — oo, the following two cases are dis-
cussed : (a) m « ka and (b) m >» ka.

{a) m < ka. For the transverse modes of m «
wavenumber ka, the values of y,, and f,, in equation
{31) reduce to

B, =1 (36)

Y =1
Equation (27) now becomes
(@) = kaQ'"* (14 Q). (37

(b) m » ka. When the order of the modified Bessel
functions (or the transverse mode ) is very high, the
asymptotic expansion of the functions leads to

Y = kajl(ka)* +m»))"2, B, = kal(ka)® +m’]'".
(38)

The dispersion relation of equation (27) now becomes

H. Q. Yanc

(aF),, = kaQ'?* {1+ Q). (3%

We see that under both conditions the growth rates
are the same and are independent of m. This is under-
standable because when ka — o, the original cyl-
indrical vortex sheet becomes a planar sheet.

Intermediate wavelength

For wavelengths which are neither very short nor
very long, we can use equation (27) directly to com-
pute the growth rate of the mth mode. It is observed
from Fig. 3, which displays the growth rate for various
modes at Q = 1.0, that the system is unstable at all
wavenumbers for all modes. and asymmetric modes
{m > 0) are more unstable than the symmetric one
(m = 0). It seems that all asymmetric modes have
almost the same growth rate. Careful examination of
the calculated data indicates that the sinuous mode
has the highest growth rate in all the modes, and the
following relation holds:

40

At limits of k£ - 0 and k — oc, the growth rates for all
the modes approach the asymptotic values discussed
above.

Effect of density ratio
For the buoyancy flow, the density ratio reflects the
dimensionless temperature ratio
g =psfp =T,jT, 41
The density ratio also relates to the Grashof number.
Since p, > p,. Q is always larger than or equal to
unity. If g, » p,, the sinuous mode (m = 1} may not
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Fic. 3. Growth rate as a function of wavenumber at various
transverse modes for @ = 1.0.
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be the preferred mode. This is proved by Fig. 4,
which shows the growth rate of the dilational mode
(m = 0) and the sinuous mode (m = 1) at the density
ratios of @ = 10 and 100. Unlike the case of Q = 1.0,
the symmetric mode dominates when the wavenumber
is high. The wavenumber, above which (%), > (¥},
depends on density ratio. An equilibrium density ratio
(Qeq)m is defined at which

(@) o = (@) 42)
From equation (27) we obtain
(Qed)m = [¥0¥m/ (BoB)] . 43)

The calculations by the above relation show that for

all m, (Q). are almost the same and have the fol-
lowing relation :

(Qaq)} > (Qeq)Z > > (Qeq)m > (44)
The (Q.,).. are depicted in Fig. 5. An amplified view
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FiG. 5. Equilibrium density ratio as a function of wave-
number.
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Fig. 6. Amplified view of Fig. 5at m = 1 and 2.

of Fig. 5 along with (Q.,)., is given in Fig. 6. As for
cigarette smoke, in addition to a smaller radius of the
plume, the density ratio is close to unity. Therefore,
one expects sinuous instability. For the plume from a
fire pool, both the radius of the plume and the density
ratio are high (due to the high temperature of the
flame). As a result, the dilational mode may be the
least stable mode.

SUMMARY

The present paper derives a dispersion equation
which accounts for the growth of all asymmetric
modes in a plume. It is shown that when the density
ratio between the plume and the surrounding air is
small asymmetric modes have a higher growth rate
than the symmetric one, and the sinuous mode is the
most unstable mode. This proves theoretically the
‘buckling’ {or meandering) shape observed in the
experiments.

REFERENCES

1. L. Pera and B. Gebhart, On the stability of laminar
plumes; some numerical solutions and experiments, Int.
J. Heat Mass Transfer 14, 975-984 (1971).

2. S. E. Haaland and E. M. Sparrow, Stability of buoyant
boundary layers and plumes, taking account of non-par-
allelism of the basic flows, J. Hear Transfer 95, 295-301
(1973).

3. S. Kimura and A. Bejan, Mechanism of transition to
turbulence in buoyancy plume flow, Ins. J. Heat Mass
Transfer 26, 1515-1532 (1983).

4. A. Bejan, Buckling flows: a new frontier in fluid mech-
anics. In Annual Review of Heat Transfer and Fluid
Mechanics (Edited by C. L. Tien), pp. 262-300 (1989).

5. A. Bejan, Convection Heat Transfer. Wiley, New York
(1984).

6. B. Gebhart, Y. Jaluria, R, Mahajan and B. Sammakia,
Buoyancy-induced Flows and Transport. Hemisphere,
Washington, DC (1988).

7. H. Q. Yang, Non-axisymmetric breakup of a liquid jet
during atomization, AIAA paper, AIAA-91-0693 (1991).



1532

H. Q. Yang

DEFORMATION D’UN PANACHE THERMIQUE

Résumé-——La transition d’une panache thermique entre écoulements laminaire et turbulent est caractérisée
par une déformation qui n’est pas axialement symétrique. Les analyses antérieures sont limitées soit au
panache plan ou a 'hypotheése axisymétrique et par conséquent elles ne sont pas capables de prédisre le
phénoméne réel. Cette étude développe une nouvelle équation de dispersion qui tient compte de Uinstabilité
de tous les modes transverses. L’équation de dispersion montre que I'interaction dynamique de 'air ambiant
est responsable de la croissance d’une perturbation quelconque a la surface du panache et le mode sinueux
a le taux de croissance le plus élevé a tous les nombres d’onde lorsque la difference de densité entre le
panache et Pair environnant est faible. La théorie présentée prouve Ja forme sinueuse de I'apparition de
P'instabilité d’un panache.

KRUMMUNG EINER THERMISCHEN AUFTRIEBSFAHNE

Zusammenfassung—Der Ubergang einer thermischen Auftriebsfahne von laminarer zu turbulenter Stré-
mung ist durch eine nichtachsensymmetrische Deformation charakterisiert. Vorangegangene Analysen sind
entweder auf ebene Auftriebsfahnen beschrinkt oder auf die Annahme ciner Achsensymmetrie. Daher sind
diese Untersuchungen auBlerstande das tatsdchliche Phanomen zu beschreiben. Hier wird nun eine neue
Dispersionsgleichung entwickelt, die die Instabilitit aller Ubergangsarten der Auftriebsfahne beriick-
sichtigt. Die Dispersionsgleichung zeigt, daB das dynamische Zusammenspiel mit der umgebenden Luft
fiir das Wachstum jeglicher Stérungen an der Oberflliche der Auftriebsfahne verantwortlich ist. Die
Sinusform zeigt bei allen Wellenzahlen dann die gréfite Wachstumsrate, wenn der Dichteunterschied
zwischen der Auftriebsfahne und der umgebenden Luft gering ist. Die vorgelegte Theorie bestitigt die
Schlangenform fiir das Auftreten einer Instabilitdt der Auftriebsfahne.

MPOJAOJILHBIA U3rHB BOCXOOAMENR CTPYH

Ammoramus—ITepexon Bocxonsiuell CTPYM OT JaMHHADHOTO pexuMa K TypOyneHTHOMY XapakrepH-
ayeTca HeocecMMMeTpHuHO# Aepopmatmelt. [Ipeasinymme paboTsl OrpaHHMIMBAIHCEL JIMGO IUIOCKMME,
60 OCECHMMETPHMHBIMHI CTPYSMH H HE COOTRBETCTBOBAJIM PEasibHOR catyaunu. B sacrosinem Hecaeno-
BaHUM BLIBEICHO HOBOE YPaBHCHHE AMCIEPCHH, YYHTBIBAIOIIEE HEYCTOHYHBOCTE BCEX MONEPSHHBIX MO B
cTpye. YpaBHeHHe NOKa3bBAET, YTO AMHAMMYECKOE B3AHMOICHCTBHE C OKPYXaIOHMAM BO3AYXOM 06yc-
JIOBAMBAET POCT JHOBLIX BO3MYILEHHH HA TOBEPXHOCTH CTPYH H BONHOOGpa3HAs MOl o0rajaeT MaxcH-
MasbHON CKODOCTHIO POCTA NpH MOOHIX BOMHOBBIX MHCHAX, €CNH PAa3HOCTbL MIOTHOCTEH CTpyw M
OKPYKAIOMIEro BO3yXa HesHaduTebHa. COrIaCHO NPEIOKEHHOH TEOPUH BOSHMKHOBCHHE HOYCTOHYM-
BO3TH CTPYH XapakTepusyercs 3MeeBHIHOH GopMoil.



